Gromex: Electrostatics with Chemical Variability for Realistic Molecular Simulations on the Exascale

نویسندگان

  • Hao Zhou
  • Hugo Guterres
  • Carla Mattos
  • Lee Makowski
  • Abhishek Singharoy
  • Klaus Schulten
چکیده

867-Plat Verifying Self-Consistency of Protein Structure and Dynamics through MD Simulation and WAXS Hao Zhou1, Hugo Guterres2, Carla Mattos2, Lee Makowski3. EECE, Northeastern University, Boston, MA, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA, Bioengineering Department, Northeastern University, Boston, MA, USA. Molecular Dynamics (MD) simulations based on a crystal structure and selected force field represent a powerful approach to generate models for the internal motions of a protein in order to interpret the results of biological experiments and model the interactions between proteins and ligands. However, there are relatively few experimental probes that can be used to verify the results of MD, particularly with regard to slow, correlated motions of loops, folds or domains. Wide-angle X-ray solution scattering (WAXS) is sensitive to protein structure and dynamics including secondary, tertiary and quaternary structure and slow, correlated motions. Here, we present a method to utilize the crystal structure of a protein and its corresponding MD simulation to predict WAXS data from a protein. First, the WAXS pattern of a rigid protein is calculated using an explicit atom model of the hydration layer with the software package, XS. Second, MD trajectories are utilized to calculate a sigma-r plot (the standard deviation of interatomic distances averaged as a function of interatomic distance) which is subsequently combined with the results of the XS calculation to predict the scattering pattern of the dynamic protein. The difference between observed and calculated intensities is minimized by scaling the sigma-r plot with a single variable factor which provides a measure of the discrepancy between experimental and computational characterization of global dynamics. In examples presented here, we show that the correspondence between observed and calculated intensities are often excellent, providing direct experimental validation of the MD results. In other examples, we demonstrate how the approach can identify over or under-estimates of large scale motions in MD simulations that may arise from under-sampling of the structural ensemble or inappropriate choice of simulation parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Dynamic Simulation of Membrane Desalination Modules Accounting for Organic Fouling

A reliable dynamic simulator (based on a sound process model) is highly desirable for optimizing the performance of individual membrane modules and of entire desalination plants. This paper reports on progress toward development of a comprehensive model of the complicated physical-chemical processes occurring in spiral wound membrane (SWM) modules, that accounts for the...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

A Novel Toolbox for Generating Realistic Biological Cell Geometries for Electromagnetic Microdosimetry

Researchers in bioelectromagnetics often require realistic tissue, cellular and sub-cellular geometry models for their simulations. However, biological shapes are often extremely irregular, while conventional geometrical modeling tools on the market cannot meet the demand for fast and efficient construction of irregular geometries. We have designed a free, user-friendly tool in MATLAB that comb...

متن کامل

Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential ene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017